McGraw Structural Engineering, LLC 1118 Enstad Ln Silverton, OR 503.884.2178

CS2021 Ver 2022-04-02

STRUCTURAL CALCULATIONS

FOR

Alev Residence

6848 SE 33rd St, Mercer Island, WA

Section	Pages	Description
1	1-10	General Codes and Loads
2	11-13	Site Specific, Local Code Data
3	14-21	Lateral Shearwall and Diaph Horizontal Di
4	22-26	Holdown Post-Installed Anchorage
5	27	Guardrail Anchorage (guard by others)
6	28-42	Joists, Beams, Stl Col, Stl Base Plate, and

JOB TITLE	JOB TITLE Alev Residence				
	Garage Structural Repair				
JOB NO.	22-108	SHEET NO.			
CALCULATED BY	RDM	DATE	5/4/23		
CHECKED BY	RDM	DATE	5/5/23		

www.struware.com

1118 Enstad Ln Silverton, OR 503.884.2178

JOB TITLE Alev Residence			
	Garage Structural	Repair	
JOB NO.	22-108	SHEET NO.	
CALCULATED BY	RDM	DATE	4/22/22
CHECKED BY	RDM	DATE	4/23/22

www.struware.com

Code Search

Code: International Building Code 2021

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

Risk Category =	II
Wind factor =	1.00
Snow factor =	1.00
Seismic factor =	1.00

Type of Construction:

Fire Rating:

0	Roof =	0.0 hr
	Floor =	0.0 hr

Building Geometry:

0.13 / 12	0.6 deg
30.0 ft	-
20.0 ft	
8.5 ft	
0.0 ft	
0.0 ft	
	0.13 / 12 30.0 ft 20.0 ft 8.5 ft 0.0 ft 0.0 ft

Live Loads:

<u>Roof</u>	0 to 200 sf. 200 to 600 sf.	20 psf 24 - 0.02Area, but not less than 12 psf
	over 600 st	12 psi
Decks (1	I.5 times live lo	ad) 60 psf
<u>Floor:</u> Typical f	Floor	40 psf
Partition	s	N/A
Storage	areas above c	eilings 20 psf

1118 Enstad Ln Silverton, OR 503.884.2178

ASCE 7-16

JOB TITLE Alev Residence				
	Garage Structural Repair			
JOB NO.	22-108	SHEET NO.		
CALCULATED BY	RDM	DATE	4/22/22	
CHECKED BY	RDM	DATE	4/23/22	

Wind Loads :

Ultimate Wind Speed	98 mph
Nominal Wind Speed	75.9 mph
Risk Category	II
Exposure Category	С
Enclosure Classif.	Enclosed Building
Internal pressure	+/-0.18
Directionality (Kd)	0.85
Kh case 1	0.849
Kh case 2	0.849
Type of roof	Monoslope

Topographic Fac	tor (l	≺zt)	
Topography		3D Axisym Hill	
Hill Height	(H)	150.0 ft	
Half Hill Length (I	Lh)	820.0 ft	
Actual H/Lh	=	0.18	
Use H/Lh	=	0.00	
Modified Lh	=	820.0 ft	
From top of cres	t: x =	0.0 ft	
Bldg up/down wir	ıd?	downwind	
H/Lh= 0.00		K ₁ =	0.000
x/Lh = 0.00		K ₂ =	1.000
z/Lh = 0.02		K ₃ =	0.929
At Mean Roof Ht	:		
	14.1	(4.16.16.16.)40	

$$Kzt = (1+K_1K_2K_3)^2 = 1.00$$

2D	RID	GE	or	3D	AXIS	YMI	ME	TRI	CAL	HIL	L
											-

<u>Gust</u>	Effect	Factor
ł	ן =	8.5 ft
В	5 =	20.0 ft
/z (0.6h)) =	15.0 ft

 $\label{eq:Flexible structure if natural frequency < 1 Hz (T > 1 second).$ If building h/B>4 then may be flexible and should be investigated. h/B = 0.43 Rigid structure (low rise bldg)

G =

0.85 Using rigid structure default

Rigid Structure Flexible or Dy			amically Se	nsitive St	ructure		
ē =	0.20	Natural Frequency $(\eta_1) =$	1.0 Hz				
ł =	500 ft	Damping ratio (β) =	5				
z _{min} =	15 ft	/b =	0.65				
c =	0.20	/α =	0.15				
$g_Q, g_v =$	3.4	Vz =	82.8				
L _z =	427.1 ft	N ₁ =	5.16				
Q =	0.95	R _n =	0.050				
I _z =	0.23	R _h =	0.747	η =	0.472	h =	8.5 ft
G =	0.90 use G = 0.85	R _B =	0.539	η =	1.112		
		R _L =	0.163	η =	5.583		
		g _R =	4.189				
		R =	0.049				
		Gf =	0.898				

1118 Enstad Ln Silverton, OR 503.884.2178

JOB TITLE	Alev Residence				
	Garage Structural Repair				
JOB NO.	22-108	SHEET NO.			
CALCULATED BY	RDM	DATE	4/22/22		
CHECKED BY	RDM	DATE	4/23/22		

Enclosure Classification

Test for Enclosed Building:

Ao < 0.01Ag or 4 sf, whichever is smaller

Test for Open Building:

All walls are at least 80% open. Ao ≥ 0.8Ag

Test for Partially Enclosed Building: Predominately open on one side only

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

Aoi / Agi ≤ 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Test for Partially Open Building:

A building that does not qualify as open, enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Ground Elevation Factor (Ke)

Grd level above sea level = 0.0 ft Constant = 0.00256

Adj Constant = 0.00256

Ke = 1.0000

JOB TITLE	LE Alev Residence		
	Garage Structural Repair		
JOB NO.	22-108	SHEET NO.	
CALCULATED BY	RDM	DATE	4/22/22
CHECKED BY	RDM	DATE	4/23/22
	JOB TITLE JOB NO. CALCULATED BY CHECKED BY	JOB TITLE Alev Residence Garage Structura JOB NO. 22-108 CALCULATED BY CHECKED BY RDM	JOB TITLE Alev Residence Garage Structural Repair JOB NO. 22-108 SHEET NO. CALCULATED BY RDM DATE CHECKED BY RDM DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings

Kz = Kh (case 1) =	0.85
Base pressùre (qh) =	17.7 pst
GCpi =	+/-0.18

Edge Strip (a) =	3.0 ft
End ∠one (2a) =	6.0 ft
Zone 2 length =	10.0 ft

Wind Pressure Coefficients

	C	ASE A			CASE B	
l I		θ = 0.6 deg				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.40	0.58	0.22	-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	-0.69	-0.51	-0.87
3	-0.37	-0.19	-0.55	-0.37	-0.19	-0.55
4	-0.29	-0.11	-0.47	-0.45	-0.27	-0.63
5	i		I	0.40	0.58	0.22
6	1		ļ	-0.29	-0.11	-0.47
1E	0.61	0.79	0.43	-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	-1.07	-0.89	-1.25
3E	-0.53	-0.35	-0.71	-0.53	-0.35	-0.71
4E	-0.43	-0.25	-0.61	-0.48	-0.30	-0.66
5E	1		ļ	0.61	0.79	0.43
6E	l		I	-0.43	-0.25	-0.61

Ultimate Wind Surface Pressures (psf)

1	10.3	3.9	-4.8	-11.2
2	-9.0	-15.4	-9.0	-15.4
3	-3.4	-9.8	-3.4	-9.8
4	-2.0	-8.3	-4.8	-11.2
5			10.3	3.9
6			-2.0	-8.3
1E	14.0	7.6	-5.3	-11.7
2E	-15.8	-22.2	-15.8	-22.2
3E	-6.2	-12.6	-6.2	-12.6
4E	-4.4	-10.8	-5.3	-11.7
5E			14.0	7.6
6E			-4.4	-10.8

Parapet

Windward parapet = Leeward parapet =

0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0)

overhangs =

Windward roof

12.4 psf (upward) add to windward roof pressure

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)						
Interior Zone:	Wall	12.2 psf				
	Roof	-5.7 psf	**			
End Zone:	Wall	18.4 psf				
	Roof	-9.6 psf	**			

Longitudinal direction (parallel to L)

Interior Zone: Wall 12.2 psf

End Zone: Wall 18.4 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

McGraw Structural Engineering, LLC

1118 Enstad Ln Silverton, OR 503.884.2178

JOB TITLE Alev Residence						
	Garage Structural Repair					
JOB NO.	22-108	SHEET NO.				
CALCULATED BY	RDM	DATE	4/22/22			
CHECKED BY	RDM	DATE	4/23/22			

Snow Loads : ASCE 7- 16

Roof slope Horiz eave to ridge dist ((W)	=	0.6 deg 20 0 ft	
Roof length parallel to ridge	(L)	=	30.0 ft	
Type of Roof Ground Snow Load	Pa	=	Monoslope 25.0 psf	
Risk Category	' y	=	20.0 p3i	
Importance Factor	Ι	=	1.0	
Thermal Factor	Ct	=	1.00	
Exposure Factor	Се	=	1.0	
Pf = 0.7*Ce*Ct*I*Pg Unobstructed Slippery Surface		=	17.5 psf no	
Sloped-roof Factor Balanced Snow Load	Cs	= =	1.00 17.5 psf	
Rain on Snow Surcharge Angle Code Maximum Rain Surcharge	•		0.40 deg 5.0 psf	
Rain on Snow Surcharge		=	0.0 psf	
Ps plus rain surcharge	-	=	17.5 psf	
IVIINIMUM SNOW LOAD	-m	=	20.0 pst	
Uniform Roof Design Snow Loa	ad	=	20.0 psf	use

Nominal Snow Forces

Near ground level surface balanced snow load = 25.0 psf

NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

Windward Snow Drifts 1 - Against walls, parapets, etc

		· · · · · · · · · · · · · · · · · · ·
Up or downwind fetch	lu =	65.0 ft
Projection height	h =	12.0 ft
Projection width/length	Ip =	20.0 ft
Snow density	g =	17.3 pcf
Balanced snow height	hb =	1.01 ft
	hd =	2.03 ft
	hc =	10.99 ft
hc/hb >0.2 = 10.8	Therefore, de	esign for drift
Drift height (hd)	=	2.03 ft
Drift width	w =	8.12 ft
Surcharge load:	pd = γ*hd =	35.0 psf
Balanced Snow load:	=	17.5 psf
		52.5 psf
Windward Snow Drifts 2 - Aga	ainst walls, par	apets, etc
Up or downwind fetch	lu =	0.0 ft
Projection height	h =	0.0 ft
Projection width/length	lp =	0.0 ft
Snow density	g =	17.3 pcf
Balanced snow height	hb =	1.01 ft
	hd =	1.00 ft
	hc =	-1.01 ft
hc/hb <0.2 = -1.0	lp <15', drift	not req'd
Drift height (hc)	=	0.00 ft
Drift width	w =	-8.12 ft
Surcharge load:	pd = γ*hd =	0.0 psf
Balanced Snow load:	=	17.5 psf
		17.5 psf

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

25.0

McGraw Structural Engineering, LLC	JOB TITLE Alev Residence				
1118 Enstad Ln		Garage St	ructural Repair		
Silverton, OR		JOB NO.	22-108	SHEET NO.	
503.884.2178		CALCULATED BY		DATE	4/22/22
		CHECKED BY	RDM	DATE	4/23/22
Seismic Loads: IBC 2021				Strength Level	I Forces
Risk Category : II					
Importance Factor (Ie) : 1.00					
Site Class : D - code default					
Ss (0.2 sec) = 141.00 %g S1 (1.0 sec) = 49.10 %g		A site sp isolated	ecific grou	nd motion analysis is required for or with damping systems, see AS	seismically CE7 11.4.8
		Site specifi	c ground n	notion analysis performed:	
Fa = 1.200 Sms =	1.692	S _{DS} =	1.128	Design Category =	D
Fv = 1.809 Sm1 =	0.888	S _{D1} =	0.592	Design Category =	D
Seismic Design Category = D Redundancy Coefficient ρ = 1.00 Error p should be Number of Stories: 1 Structure Type: Light Frame	e 1.3 due to p	lan irregularity		See ASCE7 Sect 12.2.2	1 0 10 0 1 0
Vertical Structural Irregularities: 1b) Extreme Torsional Irregula	arity			See ASCE7 Sect 12.3.3.4	4 & 12.8.4.3
Elevible Diaphragms: No					
Seismic resisting system: Light frame (wood) walls with System Structural Height Limit: 65 ft Actual Structural Height (n) = 8.5 ft	th structural	wood shear panels	S		
	exceptions a	and other system in	Itation		
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Seismic Load Effect (E) = Eh +/-Ev = ρ	Q _E +/- 0.2S _D	$_{\rm S} D = Qe +/-$	0.226D	Q _E = horizontal seismic force	e
Special Seismic Load Effect (Em) = Emh +/- Ev = Ωc	$Q_{E} + - 0.2S_{C}$	$_{\rm DS}$ D = 3Qe +/- (0.226D	D = dead load	
PERMITTED ANALYTICAL PROCEDURES					
Simplified Analysis - Use Equivalent Lateral Forc	e Analysis				
Equivalent Lateral-Force Analysis - Permitted Building period coet. (Cr) = 0.020				Cu = 1.40	
Approx fundamental period (Ta) = $C_T h_0^x =$	0.100 sec	x= 0.75	Tm	ax = CuTa = 0.139 sec	
User calculated fundamental period = Long Period Transition Period (TL) = ASCE7 map =	0.100 s 16 sec			T = 0.100 sec	
Seismic response coef. (Cs) = Sdsl/R = but not less than Cs = 0.044Sdsl = USE Cs =	0.174 0.050 0.174	ASCE7 11.	4.8 except	ion 2 equations used	
	Desig	n Base Shear V =	U.174W	2.4 for 250/ acres they	
Model & Seismic Response Analysis	- Permitted (s	See ASCE	r Sect 12.3 ure	3.3.4 TOP 25% connection increa	ase

ALLOWABLE STORY DRIFT

Structure Type: All other structures

Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below level :

McGraw Structural Engineering, LLC 1118 Enstad Ln Silverton, OR 503.884.2178

JOB TITLE	Alev Residence		
	Garage Structural Repair		
JOB NO.	22-108	SHEET NO.	
CALCULATED BY	RDM	DATE	4/22/22
CHECKED BY	RDM	DATE	4/23/22

Roof Design Loads

Items	Description	Multiple	psf (max)	psf (min)
Roofing	Single ply	x 1.0	1.0	0.7
Decking	5/8" plywood/OSB	x 1.0	2.2	1.8
Decking	5/8" plywood/OSB	x 1.0	2.2	1.8
Misc.	Misc.	x 1.0	0.5	0.0
		x 1.0	0.0	0.0
Framing	Wood 2x @24"	x 1.5	3.8	2.3
		x 1.0	0.0	0.0
		x 6.0	0.0	0.0
			0.0	0.0
	Act	tual Dead Load O	9.7 O	6.6
	Use	this DL instead $lacksquare$	10.0 🔴	10.0
		Live Load	20.0	0.0
		Snow Load	25.0	0.0
	Ultimate Wind	d (zone 2 - 100sf)	16.0	-19.2
ASD Loading		D + S	35.0	-
	D + (0.75(0.6*W + S)	36.0	-
		0.6*D + 0.6*W	-	-5.5
LRFD Loading	1.2D	+ 1.6 S + 0.5W	60.0	-
	1.20) + 1.0W + 0.5S	40.5	-
		0.9D + 1.0W	-	-10.2

Roof Live Load Reduction

Roof angle 0.13 / 12

0.6 deg

0 to 200 sf: 20.0 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12.0 psf

	300 sf	18.0 nsf
	400 of	16.0 por
	400 SI	10.0 psi
	500 sf	14.0 psf
User Input:	450 sf	15.0 psf

McGraw Structural Engineering, LLC 1118 Enstad Ln Silverton, OR 503.884.2178

JOB TITLE Alev Residence						
	Garage Structural Repair					
JOB NO.	22-108	SHEET NO.				
CALCULATED BY	RDM	DATE	4/22/22			
CHECKED BY	RDM	DATE	4/23/22			

Wall Design Load #1

ltems	Description	Multiple	psf (max)	psf (min)
Insulation	Rock Wool per 1" thk	x 5.50	1.1	1.1
Sheathing	1/2" gypsum board	x 1.00	2.2	2.0
Insulation	Urethane Foam w/ skin per i	x 2.00	1.0	1.0
Misc.	Misc.	x 1.00	0.5	0.0
Wall Covering	14 ga steel	x 0.50	1.8	1.7
		x 1.00	0.0	0.0
		x 1.00	0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
	6.6 O	5.8		
	8.0 🔘	5.0		

Wall Design Load #2

Items	Description	Multiple	psf (max)	psf (min)
Framing			0.0	0.0
			0.0	0.0
veneer			0.0	0.0
		x 1.00	0.0	0.0
			0.0	0.0
		x 1.00	0.0	0.0
		x 1.00	0.0	0.0
		x 1.00	0.0	0.0
	Actual D	ead Load O	0.0	O 0.0
	Use this E	0L instead [©]	0.0	• 0.0

McGraw Structural Engineering, LLC 1118 Enstad Ln Silverton, OR

503.884.2178

JOB TITLE Alev Residence Garage Structural Repair

	- 0		
JOB NO.	22-108	SHEET NO.	
CALCULATED BY	RDM	DATE	4/22/22
CHECKED BY	RDM	DATE	4/23/22

www.struware.com

CODE SUMMARY

Code:	Ir	ternationa	l Building	Code 20	21		
Live Loads:							
Roof 0 to	200 sf: 2	0 psf					
200 to	600 sf:	24 - 0.02A	rea, but n	ot less th	nan 12 psf		
Over Decks (1.5 times live load)	600 st: 1	2 pst 60 pst	F				
Decks (1.5 tilles live load)		00 ps	I				
Typical Floor		40 ps	f				
Partitions		N/A	1				
Partitions		N/A	\ \				
Partitions		N/A	۰. ۱				
Storage areas above ceilings		20 ps	f				
Deed Leader							
Dead Loads:		0.0 ma	¢				
Roof		10.0 ps	f				
		10.0 pc					
Roof Snow Loads:							
Design Uniform Roof Snow lo	ad	=	= 25.0	psf			
Flat Root Show Load		PT = Ps =	= 17.5 = 17.5	pst			
Ground Snow Load		Pa =	= 25.0	psi psf			
Importance Factor		I =	= 1	.00			
Snow Exposure Factor		Ce =	= 1	.00			
I nermal Factor Sloped-roof Eactor		Ct =	- 1	.00			
Drift Surcharge load		Pd =	-	.00			
Width of Snow Drift		w =	=				
Earthquake Design Data:							
Risk Category		=		Ш			
Importance Factor		=	= 1	.00			
Mapped spectral response ac	celeratio	Ss =	= 141	.00			
Site Class		S1 =	: 45 code def	.10 ault			
Spectral Response Coef.		Sds =	= 1.	128			
		Sd1 =	= 0.	592			
Seismic Design Category		=	: . Deering	D	tomo		
Seismic Resisting System		=	- Dearing : Light fra	me (woo	d) walls with str	uctural wood shear	panels
Seismic Response Coef.		Cs =	= 0.	174			paireie
Response Modification Factor		R =		6.5			
Analysis Procedure		=	Equivale	nt Latera	I-Force Analysi	s	
Rain Design Data							
Rain intensity		<i>i</i> =	0 00 i	n/hr			
Rain Load		, R =	= 0.0	psf			
Wind Design Data:							
Illtimate Design Wind Speed		00	mph				
Nominal Design Wind Speed		90 75.91	mph				
Risk Category		I 0.0	1				
Mean Roof Ht (h)		8.5 f	t				
Exposure Category	E	C percent	; uilding				
Internal pressure Coef.	_	+/-0.18	anun iy }				
Directionality (Kd)		0.85	5				

McGraw Structural Engineering, LLC

1118 Enstad Ln Silverton, OR 503.884.2178

JOB TITLE	Alev Residence		
	Garage Structural Repair		
JOB NO.	22-108	SHEET NO.	
CALCULATED BY	RDM	DATE	4/22/22
CHECKED BY	RDM	DATE	4/23/22

www.struware.com

Component and Cladding Ultimate Wind Pressures

Roof	Surface Pressure (psf)							
Area	10 sf	20 sf	50 sf	100 sf	200 sf	350 sf	500 sf	1000 sf
Negative Zone 1	-33.4	-31.2	-28.2	-26.0	-23.8	-22.1	-20.9	-20.9
Negative Zone 1'	-19.2	-19.2	-19.2	-19.2	-16.5	-16.0	-16.0	-16.0
Negative Zone 2	-44.0	-41.2	-37.4	-34.6	-31.8	-29.5	-28.0	-28.0
Negative Zone 3	-60.0	-54.3	-46.8	-41.2	-35.5	-30.9	-28.0	-28.0
Positive All Zones	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
Overhang Zone 1&1'	-30.2	-29.6	-28.9	-28.4	-23.8	-20.1	-17.7	-17.7
Overhang Zone 2	-40.8	-37.0	-32.0	-28.3	-24.5	-21.5	-19.5	-19.5
Overhang Zone 3	-56.8	-50.2	-41.4	-34.8	-28.2	-22.9	-19.5	-19.5

Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.2 psf)

	Parapet	Solid Parapet Pressure (psf)					
	Area	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
CASE A:	Zone 2 :	0.0	0.0	0.0	0.0	0.0	0.0
	Zone 3 :	0.0	0.0	0.0	0.0	0.0	0.0
CASE B: II	nterior zone :	0.0	0.0	0.0	0.0	0.0	0.0
C	Corner zone :	0.0	0.0	0.0	0.0	0.0	0.0

Wall	Surface Pressure (psf)						
Area	10 sf	100 sf	200 sf	500 sf			
Negative Zone 4	-20.8	-17.9	-17.1	-16.0			
Negative Zone 5	-25.5	-19.9	-18.2	-16.0			
Positive Zone 4 & 5	19.2	16.3	16.0	16.0			

5

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address:	6848 SE 33rd St, Mercer Island, WA 98040, USA	Edmonds 147 ft
Coordinates:	47.5814047, -122.2468911	2 Seate PRedmond
Elevation:	147 ft	
Timestamp:	2023-05-03T17:48:47.532Z	C SeaTace 90
Hazard Type:	Snow	oKent Tacoma
		Map data ©2023 Google Report a map error

ASCE 7-16	ASCE 7-10	ASCE 7-05
Ground Snow Load 🛕 16 lb/sqft	Ground Snow Load 🛕 15 lb/sqft	Ground Snow Load 🛕 15 lb/sqft
The reported ground snow load applies at the query location of 147 feet up to a maximum elevation of 320 feet with a tolerance of 100 feet.	The reported ground snow load applies at the query location of 147 feet up to a maximum elevation of 400 feet.	The reported ground snow load applies at the query location of 147 feet up to a maximum elevation of 400 feet.

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

ATC Hazards by Location

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

• The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address:	6848 SE 33rd St, Mercer Island, WA 98040, USA
Coordinates:	47.5814047, -122.2468911
Elevation:	147 ft
Timestamp:	2023-05-03T17:49:30.131Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	Ш
Site Class:	D-default

Basic Parameters

Name	Value	Description
SS	1.41	MCE _R ground motion (period=0.2s)
S ₁	0.491	MCE _R ground motion (period=1.0s)
S _{MS}	1.692	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.128	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F _a	1.2	Site amplification factor at 0.2s
F _v	* null	Site amplification factor at 1.0s
CR _S	0.902	Coefficient of risk (0.2s)
CR ₁	0.896	Coefficient of risk (1.0s)
PGA	0.603	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.724	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1.41	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.563	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)

https://hazards.atcouncil.org/#/seismic?lat=47.5814047&lng C1222468911489ddrEssTine48195, 38rd St%2C Mercer Island%2C WA 98040%2C USA 2/421/2

05/08/2023 5/3/23, 10:49 AM

ATC	Hazards	hv	Location
	riazarus	υy	LUCATION

SsD	3.359	Factored deterministic acceleration value (0.2s)
S1RT	0.491	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.547	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.359	Factored deterministic acceleration value (1.0s)
PGAd	1.154	Factored deterministic acceleration value (PGA)
* Coo Cootio	m 11 1 0	

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

			Project Name: Alev Residence Client Name: Alev Family Job NO: 22-108					3	Date: 5/5/2023 Designer: Ryan Ryan ▼							
GEOMETRY	(WALL RIGID	DITIES	BASED C		I OF WALL)							Building G	ometry			
BUILDING LENGTH, "x"	х	=	30	ft								Building Ge	omeny			
BUILDING WIDTH, "y"	У	=	20	ft				23 -	7							
FLOOR HEIGHT	h	=	8.5	ft	٦							Wall 3				
SHEAR PERP TO LENGTH "x"	v _y	=		2840	#											1
SHEAR PERP TO WIDTH "y"	v _x	=		2840	#			18 -	-							
Σ _(R 1)	R ₁	=	16.83													
Σ _(R 2)	R ₂	=	0	_				13 -								
Σ (R 1 & 2)	$R_y = R_1 + R_2$	=	16.83					15								
Σ _(R 3)	R ₃	=	24	_			Υ, fi						C.M., 15, 10			
Σ (R 4)	R ₄	=	30					8 -	C.R., 0	J, 8.9		Î				
Σ (R 3 & 4)	$R_x = R_3 + R_4$		54						Wall 1							Wall 2
CENTER OF MASS, m _x	m _x	=	15	ft				0								
CENTER OF MASS, m _y	m _y	=	10	ft				3 -								
CENTER OF RIGIDITY, r _x	r _x	=	0	ft				·				Wall 4				
CENTER OF RIGIDITY, r _y	r _y	=	8.889	ft				-2 -2 -		3	8	13	18	23	28	33
ACC. ESSENTRICITY, e _{ACCx}	e _{ACCx}	=	16.5	ft								х	, ft			
ACC. ESSENTRICITY, e _{ACCy}	e _{ACCy}	=	2.111	ft												
				Line	Stiffness (ft) k	Distance r	? (ft)	k(r)	J	$=k(r^2)$		$\frac{F_x(e_y')k(r)}{\Sigma k(r^2)}$	$\frac{F_{y}(e_{x}')k(r)}{\Sigma k(r^{2})}$			
				1	16.833	0.0		0.0		0.0	0.000	0.0	0.0			
				2	0	30.0)	0.0		0.0	0.000	0.0	0.0			
				3	24	11.1		266.7		2963.0	0.050	299.8	2343.0			

266.7

 ΣJ =

0.050

299.8

2343.0

2370.4

5333.3

4

30

8.9

05/08/2023 WIND DESLON 1 V= 98 mph have = 8-7" + 8-4"2" = 8.5=+ Exp = C Kd = 0.85 Kz=Kn= 0.85 Kat = 1.0 (MERCER ISLAMS MAPS) Sh= 0.00256 (1.0) (.85). \$5) (18) = 17.8 PSF 2 = 3FT, 20 = 6FT B $\frac{20}{20} = \frac{3}{2} \frac{3}{10} \frac{1}{10} \frac{1}{10}$ L 1 + + FROM . F16 28.3-1 EE GFT 5= WEDGE = gh x + (60pe 16+4E) = 26.4 PLF VA = (26.4)6 VB (1-04-0,68) =0.35 +52(10) =VA -678# = 678# WIND MUFRS MWERS V1 = (24,4)6 52 24.4 +52(15) = 938,4 MWERS (i)_ 61 30 V3 = V, = 938.4 HWERS 6 3-CTOPS

McGraw Structural Engineering, LLC Structural Calculations 16/42

05/08/2023 SEISMIL HORIZ DIST. WTOT = 42.5 PLF (20 *2+30 *2)= 4250# 8.5 × 10 PSF 20 0 WAUS 8.5 x10 PSP 3' = (a1)(33)(12PSF) = 8316# WTOT ROOF/DELIC WTOT = 12, 000 #+ 8.5 10 PSI + 8.5' x10 FSF 42.5PF F= C5 WTOT = 0.17 (WTOT) = 2136# Cs = Spste = (1.128)(1.0) France = 0.25ms IE WP2 = 0,2(0.17)(1.0)(12.4") = 2.84" = 0.17 GOVERNS 0.7 Fp = 2.04 B WALL RIGIDITIES ARE APPROX PROPARTIENATE TO SHEARWALL CONTRIBUTING LENGTHS . Pr 16.8 = 1650 (TORSIGN ONLY) • C.M. (2120 (2000) = 16554 (TORSION OHLY) A. (2000) [2 = 30 Ry no ZMC.R = 0; [REF. RILHO DIAPH R=0 SPREADSHEET Fp J J J f eteace $V_{x}(x_{cm}-x_{cR}) = (2840)(0.7)(10.5) = \Sigma M_{R}$ CONFRED REACTION = ZIMR = 1640# = VRED ALONG GRIDS A dB 20' l DIAPH = 30' g .; N DIAPH = 1640 = 55 PLF, USE ANY CASE 30 30 5% STEVOTURAL 1 AB W/ 82 NAILS 6" EDGE TORS 12" FIED **CTOPS** McGraw Structural Engineering, LLC

Structural Calculations

17/42

05/08/2023

DIAPH = 2840 (0.7) = 99.4 PLF : USE ANY CASE 5/6" STRUCTURAL 1 W/ EJ NAMES @ 6" ETZE, 12" FIELT GRIPI * DIAPH ASPECT PATLO FOR TORSION = l' 2 30' WHICH MUTCHES MAX LIMIT FROM NOS SOPWS \$ 4.2.5.2 PART 2 (1.5) · SHEATHED IN ACCORDANCE WITH & 4.2.7.1, & 4.2.7.1 REQUIRES "WOOD STRUCTURAL PANIEL SHEATHING USED FOR DLAPH THAT ARE PART OF THE LERS SHALL BE APPLED DIRECTLY TO THE FRAMINIE MEMBELS & PLDERING," * DETAILWIE SHOWN ON S-SHORETS SHOWS THE USE OF EDGE E BOUNDARY NAILING TO BLOCKING & TAMS AN HI CLIP DIRECTLY TO TOT TE OF SHEARMANS, HI HAS 195# PER CWP WHICH EXCERDS MONST CASE VOLAPH OF 99.4 PLF. **CTOPS** McGraw Structural Engineering, LLC

Structural Calculations

Unit shear above/below strapped windows = Unit shear next to strapped windows =

78 #/ft < 280 #/ft 94 #/ft < 280 #/ft

S6 wall w/ 8d NAILS (.131") Install at 6"" edge pattern at 12" in field

Unit shear next to strapped windows =

118 #/ft < 280 #/ft 118 #/ft < 280 #/ft

Install S6 wall w/ 8d NAILS (.131") at 6"" edge pattern at 12" in field

Unit shear next to strapped windows =

167 #/ft < 280 #/ft

Install S6 wall w/ 8d NAILS (.131") at 6"" edge pattern at 12" in field

Anchor Designer™ Software Version 3.0.7947.2

1.Pro	ject	information
	_	

Customer company: Alev Family Residence Customer contact name: Zeynep Alev Customer e-mail: zeynep_alev@hotmail.com Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, h_{ef} (inch): 5.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.75 c_{ac} (inch): 7.58 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: SET-XP® - SET-XP w/ 5/8"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508

Company:	MSE, LLC	Date:	4/29/2023			
Engineer:	RDM	Page:	1/5			
Project:	Alev Garage Post-Installed Anchorage					
Address:	1118 Enstad Lane, Silverton, OR 97381					
Phone:	503-884-2178					
E-mail:	ryanmcgrawse@gmail.com					

Project description: SW Holdowns in Existing Concrete Location: Mercer Island, WA Fastening description: HDU2 w/Set-XP 0.625 AB

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Uncracked Compressive strength, f'_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: No Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: Yes Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

Company:	MSE, LLC	Date:	4/29/2023			
Engineer:	RDM Page: 3/5					
Project:	Alev Garage Post-Installed Anchorage					
Address:	1118 Enstad Lane, Silverton, OR 97381					
Phone:	503-884-2178					
E-mail:	ryanmcgrawse@gmail.com					

<Figure 2>

SIMPSON	Anchor Designer™	Company:	MSE, LLC	Date:	4/29/2023		
		Engineer:	RDM	Page:	4/5		
Strong-Tie	Software	Project:	Alev Garage Post-Installed Anchorage				
	Version 3.0.7947.2	Address:	1118 Enstad Lane, Silverton, OR 97381				
w		Phone:	503-884-2178				
		E-mail:	ryanmcgrawse@gmail.com				

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1225.0	0.0	0.0	0.0
Sum	1225.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1225

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (Ib)	ϕ	ϕN_{sa} (lb)
13110	0.75	9833

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f'_c}$	h _{ef} ^{1.5} (Eq. 17.4.2.)	2a)							
Kc	λa	f'c (psi)	hef (in)	N₂ (lb)					
24.0	1.00	2500	3.333	7303					
$0.75\phi N_{cb}=0$.75φ (A _{Nc} / A _{Nco})	Ψed,N Ψc,N Ψcp,N	I₀ (Sec. 17.3.1	& Eq. 17.4.2.1a)	1				
A_{Nc} (in ²)	A_{Nco} (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	0.75 <i>¢Ncb</i> (lb)	
60.00	100.00	3.00	0.880	1.00	0.989	7303	0.65	1860	
6. Adhesive	strength of Al fshort-termKsatαN.seis	nchor in Tens	ion (Sec. 17	<u>.4.5)</u>					
т _{к,uncr} (psi)	f short-term	Ksa	t	<i>α</i> N.seis	τ _{k,uncr} (psi)				
1060	1.72	1.0	0	1.00	1823	<u> </u>			
$N_{ba} = \lambda_{a} \tau_{uncr}$	π d ah _{ef} (Eq. 17.4.5	5.2)							
λa	$ au_{uncr}$ (psi)	da (in)	h _{ef} (in)	N _{ba} (lb)					
1.00	1823	0.63	5.000	17899					

$0.75\phi N_a = 0.73$	5 <i>ф</i> (Ама / Амао) 4	$\gamma_{ed,Na} \varphi_{cp,Na} N_{ba}$	Sec. 17.3.1 & E	q. 17.4.5.1a)				
A _{Na} (in ²)	A _{Na0} (in ²)	c№a (in)	Ca,min (in)	$\Psi_{ed,Na}$	$arPhi_{ m p,Na}$	Nao (lb)	ϕ	0.75 <i>¢N</i> ₄ (lb)
78.28	258.98	8.05	3.00	0.812	1.000	17899	0.65	2141

Anchor Designer™ Software Version 3.0.7947.2

Company:	MSE, LLC	Date:	4/29/2023			
Engineer:	RDM	Page:	5/5			
Project:	Alev Garage Post-Installed Anchorage					
Address:	1118 Enstad Lane, Silverton, OR 97381					
Phone:	503-884-2178					
E-mail:	ryanmcgrawse@gmail.com					

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1225	9833	0.12	Pass
Concrete breakout	1225	1860	0.66	Pass (Governs)
Adhesive	1225	2141	0.57	Pass

SET-XP w/ 5/8"Ø F1554 Gr. 36 with hef = 5.000 inch meets the selected design criteria.

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	1225	15732	7.8%	
Concrete	Factored Load. Nua (lb)	Nominal Strength, N₀ (Ib)	Ratio	
Concrete breakout	1225	3815	32.1%	Governs
Adhesive	1225	4392	27.9%	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, ductility requirements for shear have been determined to be satisfied - designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

22-108 Method Hardscapes

Roof						
Member Name	Results	Current Solution	Comments			
Floor: Joist	Passed	2 piece(s) 1 3/4" x 5 1/2" 2.0E Microllam® LVL @ 32" OC				
Floor: Joist	Passed	1 piece(s) 2 x 8 DF No.2 @ 16" OC				

ForteWEB Software Operator RYAN D MCGRAW McGraw Structural Engineering, LLC (503) 884-2178 ryanmcgrawse@gmail.com Job Notes

5/5/2023 2:56:56 PM UTC ForteWEB v3.5 File Name: 22-108 Method Hardscapes

MEMBER REPORT

Roof, Floor: Joist 2 piece(s) 1 3/4" x 5 1/2" 2.0E Microllam® LVL @ 32" OC

Direct bearing on (2) 1 3/4" x 5 1/2" LVL (2.0E) or (3) 1 1/2" x 5 1/2" LVL (2.0E) is equivalent by observation.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	727 @ 2 1/2"	4922 (2.25")	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	607 @ 9"	3658	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1342 @ 4'	4251	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.130 @ 4'	0.253	Passed (L/702)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.151 @ 4'	0.379	Passed (L/602)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	42	Any	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Span rating of 1' 8" o.c. for selected sheathing is less than design on center spacing of 2' 8" o.c. for product.

· Allowed moment does not reflect the adjustment for the beam stability factor.

· A structural analysis of the deck has not been performed.

· No composite action between deck and joist was considered in analysis.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	107	640	747	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	107	640	747	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 10" o/c	
Bottom Edge (Lu)	7' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8'	32"	10.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
RYAN D MCGRAW /IcGraw Structural Engineering, LLC 503) 884-2178		
yanmcgrawse@gmail.com	McGraw Structural	Engineering, LLC
	Structural Co	alculations

5/5/2023 2:56:56 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 22-108 Method Hardscapes $\frac{2}{10}$

MEMBER REPORT

Roof, Floor: Joist 1 piece(s) 2 x 8 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	496 @ 10' 3 1/2"	1406 (1.50")	Passed (35%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	414 @ 9' 8 1/4"	1305	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1186 @ 5' 3"	1360	Passed (87%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.259 @ 5' 3"	0.336	Passed (L/466)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.300 @ 5' 3"	0.504	Passed (L/403)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Beam - DF	3.50"	3.50"	1.50"	70	420	175	516	Blocking
2 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	71	427	178	524	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	7' o/c				
Bottom Edge (Lu)	10' 4" o/c				

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Top Mount Hanger	THA29	2.25"	4-10d	6-10d	4-10d				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 7"	16"	10.0	60.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes			
RYAN D MCGRAW McGraw Structural Engineering, LLC (503) 884-2178				
ryanmcgrawse@gmail.com		McGraw Structural	Engineering,	LLC
		Structural Co	alculations	

5/5/2023 2:56:56 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 22-108 Method Hardscapes Page 3/2 3

Detail Report: M1

	Load C	ombination: Envelope	Code check: 0.2	45 (LC 7)	
		Input Data			
		Shape:	W12X30	l Node:	N1
V	N.	Member Type:	Beam	J Node:	N2
	×	Length (ft):	30	I Release:	Fixed
> ^z	z	Material Type:	Hot Rolled Steel	J Release:	Fixed
		Design Rule:	Typical	l Offset:	N/A
		Internal Sections:	97	J Offset:	N/A
		Design Code:	AISC 15th (360-16): ASD	T/C Only:	Both Way
Material Properties					
Material:	A992	Therm. Coeff. (/1E5 F):	0.65	Fu (ksi):	65
E (ksi):	29000	Density (k/ft ³):	0.49	Rt:	1.1
G (ksi):	11154	Fy (ksi):	50		
Nu:	0.3	Ry:	1.1		
Shape Properties					
d (in):	12.3	Area (in ²):	8.79	rт (in):	1.73
bf (in):	6.52	Z _{yy} (in ³):	9.56	J (in ⁴):	0.457
tf (in):	0.44	Zzz (in ³):	43.1	kdet (in):	1.125
tw (in):	0.26	Cw (in ⁶):	720	kdes (in):	0.74
lyy (in ⁴):	20.3	Wno (in ²):	19.3		
lzz (in ⁴):	238	Sw (in ⁴):	13.9		
Design Properties					
Lь у-у (ft):	2	Ky-y:	1	Seismic DR:	None
Lb z-z (ft):	2	Kz-z:	1	Max Defl Ratio:	L/828
Lcomp top:	Lbyy	y sway:	No	Max Defl Location:	9.062
Lcomp bot:	Lbyy	z sway:	No	Span:	1
Ltorque (ft):	30	Function:	Lateral	τь:	1
		Λ	И1		
N1					
IN I					INZ

	Company Designer Job Number	: MSE LLC : RDM : 22-108 : Aloy Corogo Stl Bm
MCGRAW STRUCTURAL ENGINEERING, LLC	Model Name	: Alev Garage Stl Bm

AISC 15th (360-16): ASD Code Check

Limit State	Gov. LC	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial	7	-	-	-	-
Applied Loading - Shear + Torsion	7	-	-	-	-
Axial Tension Analysis	7	0 k	263.174 k	-	-
Axial Compression Analysis	7	0 k	117.273 k	-	-
Flexural Analysis (Strong Axis)	7	26.31 k-ft	107.535 k-ft	-	-
Flexural Analysis (Weak Axis)	7	0 k-ft	23.852 k-ft	-	-
Shear Analysis (Major Axis y)	7	9.087 k	63.96 k	0.142	PASS
Shear Analysis (Minor Axis z)	7	0 k	103.071 k	0	PASS
Bending & Axial Interaction Check (UC Bending Max)	7	-	-	0.245	PASS

Detail Report: M2

	Load Combination: Envelope		Code check: 0.37	79 (LC 7)	
		Input Data			
		Shape:	HSS3.5X3.5X3	l Node:	N4
∧ v	∧ Y	Member Type:	Column	J Node:	N3
	×	Length (ft):	8.5	l Release:	BenPIN
z	z	Material Type:	Hot Rolled Steel	J Release:	BenPIN
		Design Rule:	Typical	l Offset:	N/A
		Internal Sections:	97	J Offset:	N/A
		Design Code:	AISC 15th (360-16): ASD	T/C Only:	Both Way
Material Properties					
Material:	A500 Gr.B RECT	Therm. Coeff. (/1E5 F):	0.65	Fu (ksi):	58
E (ksi):	29000	Density (k/ft ³):	0.527	Rt:	1.3
G (ksi):	11154	Fy (ksi):	46		
Nu:	0.3	Ry:	1.4		
Shape Properties					
d (in):	3.5	lyy (in ⁴):	4.05	J (in ⁴):	6.56
bf (in):	3.5	lzz (in ⁴):	4.05		
t (in):	0.174	Area (in ²):	2.24		
Design Properties					
Lь у-у (ft):	8.5	Ку-у:	1	Seismic DR:	None
Lb z-z (ft):	8.5	Kz-z:	1	Max Defl Ratio:	L/10000
Lcomp top:	Lbyy	y sway:	No	Max Defl Location:	0
Lcomp bot (ft):	8.5	z sway:	No	Span:	N/A
Ltorque (ft):	8.5	Function:	Lateral	τь:	1
			10		
• •		Ň	12		
N4					N3
Diagrams:		7			
-					
		y Deflec	tion (in)	z Defle	ction (in)

AISC 15th (360-16): ASD Code Check

Axial Stress (ksi)

Limit State	Gov. LC	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial	7	-	-	-	-
Applied Loading - Shear + Torsion	7	-	-	-	-
Axial Tension Analysis	7	0 k	61.701 k	-	-
Axial Compression Analysis	7	15.864 k	41.897 k	-	-
Flexural Analysis (Strong Axis)	7	0 k-ft	6.335 k-ft	-	-
Flexural Analysis (Weak Axis)	-	0 k-ft	6.335 k-ft	-	-
Shear Analysis (Major Axis y)	7	0 k	17.128 k	0	PASS
Shear Analysis (Minor Axis z)	7	0 k	17.128 k	0	PASS
Bending & Axial Interaction Check (UC Bending Max)	7	-	-	0.379	PASS
Torsional Analysis	7	0 k-ft	5.274 k-ft	0	PASS

Bending Strong Stress (ksi)

Bending Weak Stress (ksi)

$$P_p / \Omega_c = \frac{f'_c A_1}{\Omega_c} MIN \left[0.85 MAX \left(\sqrt{\frac{A_2}{A_1}} , 1 \right) , 1.7 \right] = \Omega_c = 2.5$$

ANALYSIS | AISC PARAMETERS

d	=	3.5	in, column depth
b	=	3.5	in, column width
m = 0.5(N-0.95d)	=	1.8375	in
n = 0.5(B-0.95b)	=	1.8375	in
n' = 0.25(db) ^{0.5}	=	0.875	in

$X = MIN\left[\left(\frac{4db}{\left(d+b\right)^2}\right)\frac{\Omega_c P_a}{P_p} , 1\right] =$	0.19
$\lambda = MIN\left(rac{2\sqrt{X}}{1+\sqrt{1-X}}, 1 ight) =$	0.46

ANALYSIS | AISC REQUIRED THICKNESS

$$I = MAX (m, n, \lambda n') = 1.84$$
 in

$$t_{\min} = l \sqrt{\frac{3.33P_a}{F_y BN}} = 0.28$$
 in

MCGRAW STRUCTURAL ENGINEERING, LLC		Project Name Client Name Job NC Desigr	e: <u>Alev Deck Pro</u> e: <u>Method Hards</u> D: <u>22-108</u> 1: Interior Footin	ject Date capes Designe Checke g	e: 5/5/2023 r: Ryan M. r: Ryan M.			
(IBC 2021/2018 & ACI 318-14/19) Ordinary Rectangular Reinforced Concrete Footing Design Supporting Column								
(IBC 2021/2018 & ACI 318-14/19 COLUMN WIDTH COLUMN DEPTH BASE PLATE WIDTH (TO BOLT C.L.) BASE PLATE DEPTH FOOTING CONCRETE STRENGTH REBAR YIELD STRESS SERVICE DEAD LOAD SERVICE LIVE LOAD SERVICE LIVE LOAD SERVICE WIND LOAD SERVICE WIND LOAD SEISMIC AXIAL LOAD LIVE LOAD REDUCTION FACTOR SHOULD OVERBURDEN BE USED TO REDUCE BEARING CAPACITY (<i>yes/i</i> SLAB THICKNESS SLAB UNIT WEIGHT FOOTING EMBEDMENT DEPTH FOOTING THICKNESS ALLOW SOIL PRESSURE FOOTING WIDTH FOOTING LENGTH	$\begin{array}{rcl} c_{1} & = \\ c_{2} & = \\ b_{1} & = \\ b_{2} & = \\ f_{c'} & = \\ f_{c'} & = \\ f_{p} & = \\ P_{D} & = \\ P_{D} & = \\ P_{L} & = \\ P_{S} & = \\ P_{W} & = \\ P_{E} & = \\ f_{1} & = \\ f_{1} & = \\ 0 \\ no) \\ t_{s} & = \\ m_{conc.} & = \\ m_{conc.}$	Rectangui 3.5 3.5 7 2.5 60 2.25 13.75 5 0 0.5 0.5 0.5 0.5 120 12 1.5 3.25 3.25	$\frac{\text{ar centrorced Concrete}}{\text{in}}$ in in ksi $\beta_I = 0.85$ ksi kips kips kips kips kips kips kips		DESIGN SUMMARY ALL LISTE			
LONGITUDINAL BOTTOM REINF. TRANSVERSE BOTTOM REINF. BOTTOM COVER REQUIREMENT SPACING OF FLEXURAL REINF. SPACING OF FLEXURAL REINF.	# clr. = S(long) = S(short) =	4 4 3 10.00 10.00	SATISFACTORY SATISFACTORY in (Spacing is within limits of AC (Spacing is within limits of AC	El section 7.12) El section 7.12)	Long. Reinf. = 5 n Transverse Reinf. = 5 n Transverse Reinf. = 0 n Volume of Conc. = 10.5625 c	 o. 4's o. 4's within square o. 4's outside square ub. ft. 		
Analysis								
APPLICABLE DESIGN LOADS FOR (Based UPON BC SEC 1605.2.1 & ACT318 SEC 9.2.1) (Eq. 16-1, 9-1) 1.4 D (Eq. 16-2, 9-2) 1.2 D + 1.6 L + 0.5 (L (Eq. 16-3, 9-3) 1.2 D + 1.6 (L, r or S) (Eq. 16-4, 9-4) 1.2 D + 1.6 (W + f_1 L + 0.5 (L (Eq. 16-5, 9-5) 1.2 D + 1.6 W + f_1 L + 0.5 (L (Eq. 16-6, 9-6) 0.9 D + 1.0 E + f_1 L + 0.5 (L (Eq. 16-7, 9-7) 0.9 D + 1.0 E	CONCRET (, or S) + (f ₁ L or 0.3 + 0.5 (L, or S - 0.2 S	E SW') V	$U = 3.2 \text{ kips}$ $U = 27.2 \text{ kips}$ $U = 17.6 \text{ kips}$ $U = 12.1 \text{ kips}$ $U = 2.0 \text{ kips}$ $U = 2.5 \text{ kips}$ $U_{max} = 27.2 \text{ kips}$	APPLICABLE DES (BASED UPON IBC SEC.1605 (Eq. 16-8) D (Eq. 16-9) $D + L$ (Eq. 16-10) $D + (D)$ (Eq. 16-11) $D + (D)$ (Eq. 16-12) $D + (D)$ (Eq. 16-13) $D + 0$ (Eq. 16-14) $0.6 D$ (Eq. 16-15) $0.6 D$	IGN LOADS FOR SOIL 3.1) 2, or S) 75 L + 0.75 L, W or 0.7E) 75 (L + L,) + W + 0.7 E	$P = 2.3 \text{ kips} \\ P = 16.0 \text{ kips} \\ P = 7.3 \text{ kips} \\ P = 16.3 \text{ kips} \\ P = 2.6 \text{ kips} \\ P = 12.8 \text{ kips} \\ P = 1.4 \text{ kips} \\ P = 1.7 \text{ kips} \\ P_{req'd} = 16.3 \text{ kips} $		
CHECKING SOIL BEARING CAPAC (BASED UPON ACT318 SEC.15.2.2) $q_{net} =$ $q_{net} =$ $A_{reqd} =$ $A_{reqd} =$ Factored Net Pressure = $q_{un} =$ CHECKING 1-WAY (FLEXURAL) SI (BASED UPON ACT318 SEC. 7.12, 9.3.2.3, 10.2, 11.1.3.1, 1	1.7 Qa - 10.88 ft^2 10.56 ft^2 U_{max} IEAR d = T - (3 Controllin $V_u = \phi V_c =$	5 ksf if surch [(T + ts) x a] NO OVER BEARING BEARING $[A_{given} =$ in. + (#4 ft ag footing cro q_{un} $\phi_2(f)$	arge reduction is not preferred $p_{conc.}$]/12 - [$(D_f - T) \times \omega_{soff}$] BURDEN REDUCTION USE AREA IS O.K. 2.58 ksf 	L = 1.50 ki /12 = 1.35 ki D 0 in 3 OK in one-w	sf sf ay shear			

			-					1 -	
Project					Job Ref.				
	Alev Residence Galage and Deck				K Replacement 22-100				
	Structural Calculations - Wood Colur			ımn (built-up stud)	Sheet no./rev.				
			Calc. by		Date		Chk'd by	Chk'd Date	App'd Date
MCGRA) ENGIN	W STRUCTURAL EERING, LLC		RDN	1	5/7/	2023	RDM	5/8/2023	5/8/2023
Location:	2nd Sto	ory Multi-S	Story Colum	n (bear	n#2 supp	ort)			
Species/Grade	•	DF#2					Member Design \	/alues	
Nominal Size:		2 x 6					Base Values		-
Number of stud	ds =	3	(if built-up)				F _b =	875	
Stud spacing	I	0	in (used for	wind tr	ibutarv. as	s read)	F _{c11} =	1300 psi	
Dimensional I	nformat	ion				E =	1600 ksi		
h =	7'	- 6.00"	=	90	in		Adjustment Factor	S	
d1 =	5.5	in	d2 =	4.5	in		, С _р =	1.00	
S _x =	22.7	in^3	Sy =	18.6	in^3		C _{F(b)} =	1.30	
Ac =	24.75	in^2					C _{F(c)} =	1.10	
lu1 =	90	in	lu2 =	90.0	in		C _{fu} =	1.15	
K1 =	1.00		K2 =	0.50			$C_{i(b)} =$	1.00	
e1 =	0.00		e ₂ =	0.75			$C_{i(E)} =$	1.00	
Kf1 =	1.00	(solid)	Kf2 =	0.60	(nailed)		Design Values (una	adjusted for stability)
Loads		()			· · ·		E' =	1600 ksi	
Pdown =	6200	#	M _x =	0.00	k-in (about	d1 axis)	F _b * =	1138 psi	
Pup =	0	#	My =	0.00	k-in (about	d2 axis)	Fc* =	1430 psi	
Wind	25	nef	n –	0.0	nlf				
wind	20	psi	Pwind -	0.0	pii				
Allowable Ber	nding St	resses	(NDS 3.3)			Allowat	ole Axial Stresses	(NDS 3.7)	
K _{bE} =	0.439					c =	0.8		
leb1 =	165.6	in	leb2 =	165.6	in	K _{cE} =	0.3		
R _{B1} =	6.7		Rb2 =	5.0		l _{ec1} =	90 in	lec2 = 45	in
FbE1 =	15617		FbE2 =	28513		le1 /d1 =	16.36	$l_{e2}/d_2 = 10.00$	1
CL1 =	0.996		CL2 =	0.998		FcE1 =	1793	$F_{cE2} = 4800$)
Fb1' =	1303	psi	Fb2' =	1305	psi	Cp1 =	0.763	$C_{p2} = 0.557$,
Column Anolu						Fc' =	797 psi <d2 (<="" td=""><td>governs></td><td></td></d2>	governs>	
Column Analy	<u>'SIS</u>	(NDS 15.3 a	and 15.4)				Combined axial/be	ending check	-
fc =	251	psi					basic axial ratio =	0.099	
f _{bx} =	0	psi					e1 effects =	0.000 Eq. (1	5.4.2)
f _{by} =	0	psi					e2 effects =	0.205 J	
	0.1		E t t			. 0	l otal ratio =	0.304 < 1.0, 0	Ж
	Colum	in Notes:	- Fasten sti	uas or c	olumn tog	ether with	t two rows of 100 bo	ox nails @ 8" oc.	(m
			- Install tigh	n-ni blo	sking to he	or for full	bearing under colur	or window siii/nd mn	1.
			motali tigi				bearing ander oolar		
Bearing at To	o of Col	umn							
Bearing	width -	 5 5	in						
Bearing I	enath =	л.с Л.Б	in		Δh =	- 24 7	5 in^2		
Beam sp	ecies:	DF Std	,		Fc I	62	5 nsi $f_{C_1} =$	251 < 625	OK
Doamop	00100.	Drota			. •=	020		201 020,	
							8		
							6 -		
							5 -		
							²] ₩		
							1 -		
							o 	5 10	

CTOPS

